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Introduction
Infectious diseases spread along human, ani-

mal, plant, or computer networks. Understand-
ing properties of these networks gives insight into
analyzing how the disease spreads, and so recent
work has investigated the impact of network prop-
erties on epidemic spread. [1, 3, 4]. Most stud-
ies assume an average transmissibility (the prob-
ability that an infection of node i will result in
infection of the neighboring node j), but it is
well-known that the transmissibility is heteroge-
neously distributed. In this study we investigate
the impact of this heterogeneity and derive rig-
orous bounds on the size and probability of epi-
demics for given average transmissibilities. The
bounds we find give insight into optimal strate-
gies to prevent or reduce the impact of epidemics.
We study epidemics spreading on large random

networks, with fixed degree distribution. The
nodes are divided into three classes:
• Susceptible: Nodes which may become in-
fected if a neighbor is infected.

• Infected: Nodes which are infected and may
infect susceptible neighbors.

• Recovered: Nodes which have been infected
but are no longer. These nodes may not infect
or be infected.

The infectiousness of an individual can depend on
a number of properties: for example, the levels
of virus shedding or whether an employer allows
sick days. Similarly the susceptibility of an in-
dividual may depend on vaccination or exposure
history as well as personal protective measures.
The transmissibility Tuv from node u to v is given
by T (Iu,Sv) where Iu and Sv represent all factors
affecting the infectiousness of u and susceptibility
of v respectively.
A standard approach to epidemic modeling is to

take a single infected individual u (the index case)
and consider its neighbors. Each neighbor v is in-
fected with probability Tuv. The index case then
recovers. We then consider the newly infected
nodes and their susceptible neighbors, repeating
until no infected nodes remain.
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Schematic representation of Gi, Gscc, and Go. All
nodes in Gscc can reach any other node in Gscc.

An equivalent approach is more computation-
ally intense, but provides a useful theoretical
framework. We consider each node u separately
and determine a priori whether u would infect its
neighbor v if u becomes infected while v is sus-
ceptible. If so, we place a directed edge from u
to v. The edges of the original network are either
lost or replaced with a directed edge, which may
be bidirectional. This is represented in figure 1.
The index case is then chosen, and all nodes in
its out-component are infected. The size of the
outbreak is equal to the out-component size. If
the average transmissibility is large enough, then
some of the nodes have an out-component which
is limited in size only by the size of the network,
that is, Gi (the giant in-component), Gscc (the gi-
ant strongly-connected component) and Go (the
giant out component) exist as shown in figure 1.
We define these large outbreaks to be epidemics.
This occurs whenever the initial infection is in ei-
ther Gi or Gscc. The size of the epidemic is equal
to that of Gscc and Go combined. Thus the proba-
bility P of an epidemic is given by the fraction of
the nodes in Gi∪Gscc, while the attack rate A (the
fraction infected) is given at leading order by the
fraction of nodes inGscc∪Go. We note that a sym-
metry exists interchanging these by interchanging
the direction of the arrows, so any method that
calculates the probability of an epidemic may be
modified to calculate the size.

Calculating Epidemic Probability
The random networks we study have few short

loops in the limit of large network size, and so
early in the outbreak we may assume the outbreak
spreads on an infinite tree. We use a generating
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Predicting the size and probability of epidemics in a population
with heterogeneous infectiousness and susceptibility
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Comparison of theory (lines) with simulation
(symbols) for an Erdős–Rényi network. For the
different distributions of infectivity (with suscep-
tibility constant), P changes, but A does not. We
use constant recovery time τ= 5 (#), τ= 0 or ∞
(♦), τ= 2 or 8 ("), τ= 1 or 10 (◦), and finally a
constant recovery rate (×).

function [5] approach where a probability distri-
bution of non-negative integers k may be encoded
as a function by f (x) =∑∞

k=0 pkxk. We will calcu-
late a generating function f (x,g) for the number
of infected individuals in generation g. The prob-
ability that the epidemic dies out by generation g
is given by f (0,g). The probability that the epi-
demic dies in the limit of infinite system size is
given by limg→∞ f (0,g).
The details of the calculation are slightly tech-

nical, but can be found in [2]. We find rigorous
upper and lower bounds on the probability of an
epidemic in terms of the average transmissibility.
For a fixed average transmissibility T0, the epi-
demic is most likely if all nodes have probabil-
ity T0 to infect a random neighbor. In contrast,
the epidemic is least likely if a fraction T0 of the
nodes will infect all their neighbors while the re-
maining nodes infect none. Equivalent statements
hold for susceptibility and epidemic size. Our
results hold for Erdős–Rényi and scale-free net-
works as shown in the figures.

Discussion
The bounds we have derived show that if we

maximize the variance in infectiousness for a
given average transmissibility, we minimize the
probability of an epidemic. Similarly if we max-
imize the variance in susceptibility, we minimize
the size of an epidemic. Consider two strategies
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Comparison of theory (curves) with simulation
(symbols) for Tuv = 1− exp(−αIuSv) in a scale-
free network with a cutoff at high degree. The
theoretical bounds are in dashed bold. The distri-
butions are ♦: P(I ) = δ(I −1), P(S ) = 0.5δ(S −
0.001)+0.5δ(S −1);×: P(I ) = 0.5δ(I −0.1)+
0.5δ(I −1), P(S ) = 0.2δ(S −0.1)+0.8δ(S −1);
◦: P(I ) = 0.5δ(I − 0.1)+ 0.5δ(I − 1), P(S ) =
0.8δ(S − 0.011) + 0.2δ(S − 1); ": P(I ) =
0.3δ(I −0.001)+0.7δ(I −1), P(S ) = δ(S −1).

that have the same average effect, but one has
heterogeneous impact on infectiousness (e.g., in-
complete contact tracing) while the other has het-
erogeneous impact on susceptibility (e.g., incom-
plete vaccination). Which is optimal will depend
on whether an outbreak is established or not. If
it is not established and the strategy is intended
to prevent an epidemic, then contact-tracing will
outperform vaccination. In contrast, if it is es-
tablished and we instead hope to reduce the size,
vaccination will outperform contact tracing.
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